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Decay rate of the Green function in a random potential on the 
Bethe lattice and a criterion for localization 

Tohru Kawarabayashit and Masuo Suzuki 
Department of Physics, Faculty of Science, University of Tokyo, Hongo. Bunkyo-ku, Tokyo, 
Japan 

Received 20 November 1992 

Abstract. It is shown that in the tight-binding Anderson model on the Bethe Lattice the. 
exponential decay rate of the Green function can be obtained for arbitrary energies and ahitrary 
disorder. Analytical results in the case of the LorenMan dismiutiou of site energies are 
presented. As an application of these results, a criterion for the localized region on the 
corresponding regular lattice on the level of the Bethe-Peierls approhation is proposed. Our 
criterion yields exact resub in the one-dimensional limit and yields c o m t  band edges for 
the hypercubic lattice in the vanishing limit of disorder. The mobility edge trajeciory obtained 
by our criterion is given by an elliptic curve in the case of the Lorenaian distribution and its 
shape i s  found to be in qualitatively good agreement with that obtained by the finite-size scaling 
method in the hw-dimemional system. 

1. Introduction 

Since the original work by Anderson 111, much work has been done on the Anderson 
localization [2,3]. It is, however, fair to say that clarifying the nature of the localization 
transition from a statistical mechanical point of view is still a challenging problem. The 
universality of the critical exponents and the upper critical dimensionality of the localization 
transition are not yet fully understood. 

The localization transition has been studied numerically and analytically by employing 
the methods which have been developed to treat critical phenomena in statistical mechanics. 
For example, the numerical finitesize scaling method using quasi-one-dimensional systems 
has been used to study both the mobility edge trajectory and the critical exponent of the 
localization length [&SI. The localization transition in the field-theoretical model, known 
as the nonlinear U model, has also been studied using renormalization group theory [9, lo]. 
The critical exponents for the conductivity and the localization length have been estimated 
by the E(= d - 2 )  expansion of the nonlinear U model. 

On the other hand, mathematical approaches to the Anderson localization have been 
developed [ 11-29]. In particular, the one-dimensional case has been studied extensively 
by mathematical methods [I 1-16,19,26,29]. Recently, such mathematical methods have 
also been applied to higher-dimensional systems. The exponential decay of the Green 
function for sufficiently large disorder or low energies in multi-dimensional systems was 
first demonstrated by Frohlich and Spencer [17]. Their work was followed by Martinelli and 
Scoppola [18] who proved the absence of an absolutely continuous spectrum in the same 
range of parameters. The condition for the proof of localization has been somewhat relaxed 
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by several other authors [19-211. A new proof for these results has also been given by 
von Dreifus [22] and Spencer 1231. A rigorous lower bound to the critical exponent for the 
localization length has been obtained by these mathematical approaches [24,25]. One of the 
crucial assumptions in their approach to the proof of localization is the exponential decay 
of the Green function [19,26-291. This has been proved in one dimension for arbitrary 
energies and arbitrarily small disorder using the positivity of the Lyapunov exponent, but 
in higher dimensions it has been proved only for sufficiently large disorder or low energies. 

The localization transition on the Bethe lattice (the Cayley tree) has also been 
investigated by several authors [3&35]. The stability of the localized states on the Bethe 
lattice was first discussed by Abou-Chacra et al [30,31]. Some exact results for the decay 
of eigenfunctions have been obtained by Kunz and Souillard [32]. It is interesting that 
these two groups [30-321 obtained the same criterion for the mobility edge, though their 
approaches seem to be quite different. The Anderson localization on the Bethe lattice was 
also investigated by Efetov [34,35] using a field-theoretical model, i.e. the nonlinear U 
model. 

The Bethe lattice has no closed path and the sites on its boundary are as numerous as 
those inside the system. Despite these specific properties, it is still interesting to analyse a 
model on the Bethe lattice since some of its properties may be related to those on a regular 
lattice, for example, the &dimensional hypercubic lattice. It is well known that in the 
case of the king model the critical exponents and the critical temperature TC@m obtained 
by the Bethe-Peierls approximation [36] on the regular lattice are, in fact, reproduced 
exactly from analysis on the Bethe lattice [37]. From the point of view of statistical 
mechanics, the Bethe-Peierls approximation as well as the mean-field approximation is 
important because the critical exponents from these approximations become exact in high 
dimensions [38,39]. It has also been shown that the free energy per site in the limit of 
high dimensionality is exactly that given by the mean-field approximation [40]. The critical 
exponents in high dimensions are thus also obtained from analysis on the Bethe lattice. This 
type of relationship between models on the Bethe lattice and those on the regular lattice, 
in particular in high dimensions, holds for the case of percolation [41], although it appears 
to be quite different from the king model. This has also been discussed in the case of 
fermionic lattice models [42,43]. We hence expect that this relationship may also hold for 
the Anderson transition. However, the mean-field approximation on a regular lattice, which 
is expected to give exact critical exponents in high dimensions, is not yet known for this 
transition. The analysis of the Bethe lattice may thus be taken as an appropriate starting 
point for the study of its mean-field properties including the upper critical dimensionality. 
As mentioned above, localization on the Bethe lattice has indeed been investigated in this 
context both by Abou-Chacra et ai [30,31] and by Kunz and Souillard [32]. 

In the present paper, we first show that the exponential decay rate of the Green function 
at energy E E R on the Bethe lattice, which is assumed to be sufficiently large but finite, 
can be obtained by solving a self-consistent nonlinear integral equation for the distribution 
function of the Green function. It is important to note that we can define the Green function 
at real energy E ,  provided that E e u(H) where u(H) denotes the energy spectrum of 
the finite system. The self-consistent equation is obtained from a recursion formula for the 
Green function. Analytical results in the case of a Lorentzian distribution of site energies 
are explicitly obtained. As far as we know, except in one dimension, our result for the Bethe 
lattice is the first rigorous estimation of the exponential decay rate of the Green function for 
arbitrary energies and arbitrary disorder. In the latter part of the present paper, we propose, 
as an application of these results, a criterion for the mobility edge on a regular lattice on the 
level of the Bethe-Peierls approximation, which yields exact results for onedimensional 
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systems. Our argument is based on an analogy between the Green function in fermionic 
systems and the correlation functions in magnetic systems. The mobility edge trajectov 
obtained by OUT criterion in the caSe of a Lorentzian distribution of site energies s eem to be 
in qualitatively good agreement with that obtained by the finite-size scaling method on the 
corresponding hypercubic lattice. Relationships with the previous work by Abou-Chacra et 
ai [30,31] and by Kunz and Souillard [32] are also discussed. 

The present paper is organized as follows. In section 2, we introduce a Green function 
defined by a modified Hamiltonian and derive a self-consistent equation for its distribution 
function. In section 3, the relation between the decay rate of the Green function and the 
distribution function of the Green function for a modified Hamiltonian defined in section 2 
is explained. Analytical results for a Lorentzian distribution of site energies are explicitly 
presented in section 4. Our criterion for the mobility edge is described with explicit results 
for the Lorentzian distribution in section 5. In section 6, the present criterion is discussed 
in comparison with the criterion from the previous work. 

2. Recursion relation for the Green function 

We consider non-interacting electrons in a random potential on a Bethe lattice with 
connectivity K. A Bethe lattice with K = 2 is shown in figure 1. On the Bethe lattice, we 
can define a set of sites { j ]  whose distance from the origin 0 is n (i.e. I j l  l j  - 01 = n). 
We call this set of sites the nth shell and it is denoted by S. in the following. The nth 
shell consists of (K + 1)K"-' sites. The boundary shell is denoted by Sg. where B is the 
distance between the origin and the boundary and we adopt the free boundary condition. 
The lattice constant is taken to be one. 

Figure 1. A B&e lattice with connectivity K = 2. The nth shell is denoted by S. 

We adopt the tight-binding Anderson model defined by the Hamiltonian 

H = -t C/Cj + Vicki 
i 

where C/(Ci)  is the creation (annihilation) operator of an electron at site i ,  t denotes the 
hopping amplitude between nearest~neighbours and the site energies are denoted by (K}. 
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The site energies (Vi} are distributed independently and the dis'uibution function is denoted 
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by QV).  
The Green function at energy E 6 o(H) is defined by 

G(z, e'; E )  L (zl(E - H ) - ' ~ z ' )  (22) 

where z and e' denote sites on the Bethe lattice and o(H) denotes the energy spectrum 
of H. Note that the Hamiltonian H is defined on the Bethe lattice whose linear size B is 
sufficiently large but finite, i.e. B < w. 

Here we introduce an operator ri,j defined by 

ri,j = -t(cfcj + HC) (2.3) 

for the sites i and j with li - j l  = 1 and consider a modified Hamiltonian Hr,,j defined by. 

Hr,,i H - rj,j. (2.4) 

Since there is no hopping amplitude between sites i and j in the Hamiltonian Hr,,j, the 
system described by Hr,,, is divided into two independent parts. The Bethe lattice is 
accordingly divided into the two corresponding parts: that including site i is denoted by Q i  
and the other including site j by Qj (see figure 2). 

Figure 2. ni and SZj of the Bethe lattice in the Case 
K =2. where i E SL, and j E Q j .  

Figum 3. The site i E S. and its nearest neighbours 
[(i - 1) E So., and j ( l )  E Se+,, I = 1, ... , K), where 
K denotes the connectivity of the Bethe laltice. 

We then define a Green function Gr.,j(z. e') as 

(2.5) 

This Green function Gp,,, is called the modified Green function in the present paper. It is 
evident from the definition of the Hamiltonian Hr,,, that Grj,,(z, z'; E) = 0 if z E Q j  and 

Let us consider a site i E S, and its nearest neighbours (i - 1, j ( l ) ,  . . . , j(K):i - 1 E 
&-I,  j ( l ) ,  . . . , j ( K )  E $+I] as shown in figure 3. Using the resolvent identity, we obtain 
the following recursion relation for the Green function (see appendix A): 

-I , G r j , j ( z ,  e'; E )  ( z l ( E  - Hr,,,) IZ ). 

z' E Qj .  

K 
Grj.,,j(i,i; E)-' = E  - Vi - - f  2 x G r j , j m ( j ( Z ) ,  j ( l ) ;  E ) .  

I=I 
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It should be noted that the modified Green functions (Gr;,i( , , ( j( l) ,  j ( l ) ;  E)] on the right-hand 
side of equation (2.6) are completely independent random variables since the corresponding 
portions of the Bethe lattice do not share any site. It is obvious that for any site i E S,,, 
there exists a unique site j E Sm-l satisfying the condition li - j l  = 1 and, in this case, 
the modified Green function Gr,,,(i, i; E) thus, in fact, depends only on site i .  This allows 
us to abbreviate the inverse of the modified Green function to 

(2.7) 

for sites i and j with Jil z ljl and Ji - jl  = 1. The variable yi is defined for every site 
except i = 0. We can write equation (2.6) in terms of yi as 

yi = Gri,j(i, i ;  E)-' 

It should be remarked here that the quantity yi satisfying the recursion relation (2.8) is also' 
related to the decay (or growth) rate of the eigenfunctions. The eigenfunction @ E ( i )  is 
defined as the solution of the Schradinger equation H @ E  = E @ E .  We can then easily find 
that the quantity zi defined by 

(2.9) zi G - z @ E ( j ) / @ E ( i )  for ( f ,  j : [il > ljl, ( i  - j l  = 1) 

also satisfies the same recursion relation as equation (2.8) 

(2.10) 

Note that in definition (2.9) site j is uniquely determined for fixed i. 

modified Green functions. If we take the free boundary condition, we have 
Now let us consider the distribution function of the variables {yi], i.e. the inverse of the 

(2.11) 

for any site m in the boundary shell (m E SE). The distribution function Q"")(ym) of ym is 
then given by 

y, = E - V, 

Q("(Ym) P(E - Y d .  (2.12) 

We thus obtain that the distribution functions of the variables [ym] in the boundary shell 
(ym E SE) are uniform and are equivalent to the distribution function of the site energies. 
It is easy to see that if the distributions are uniform in the mth shell, the distributions in the 
(m - 1)th shell are then also uniform. The distributions are thus uniform in each shell in 
the case of the free boundary condition. The distribution at the nth shell is denoted by Q. 
in the following. We therefore obtain from equation (2.8) the following nonlinear integral 
equation for the distribution function Qn(yJ for n # 0 

(2.13) 
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Next we consider the steady solution Q(y) of equation (2.13). Taking Q, = Q.+l 
in equation (2.13), we obtain the following self-consistent nonlinear integral equation 

Q 

(2.14) 

for the distribution function Q(y). A nonlinear integral equation of this type has also 
appeared in previous papers [30,32] in different contexts. The steady solution Q(y) can 
be obtained analytically when the distribution function of the random potentials [Vi) is 
Lorentzian. Using this solution Q(y), we discuss the exponential decay rate of the Green 
function in the next section. 

We have discussed the Green function Gr<-,,,(i, i ;  E) defined for the modified 
Hamiltonian. In the same way, we can also obtain the distribution Qo of the Green function 
G(0,O; E)- ' ,  where 0 denotes the origin of the Bethe lattice. Since the Green function. 
G(O.0; E) can be expressed in terms of the modified Green functions (Gp0,,@} i.e. 

G(O.0; E ) - ' =  E -  V o - t * x G r a i m ( j ( l ) ,  j ( Z ) ; E )  
2 

j ( l ) ,  . . . , j  (Z) E SI (2.15) 
I=I 

with coordination number 2 K + 1,  we obtain the following equation 

for the distribution function Qo(Y0) at the origin 0. If the distance from the boundary to 
the origin is sufficiently large, we may replace 1 2 1  in equation (2.16) by Q. We then finally 
arrive at 

(2.17) 

3. Exponential decay rate of the Green function 

Let us consider the Green function G(m, n;  E) = (ml(E - H)-'In) .  On the Bethe lattice, 
there exists a path from site m to site n which is specified by the sites {m, m + 1, . . . , n = 
m + L; L = Im - nl) as shown in figure 4. Using the resolvent identity (see appendix A) 
again, we obtain 

G(m, m + L ;  E )  = G ( m ,  m + L - 1; E)(-f)Grm+L-,,.+L(m + L, m + L; E). (3.1) 

Note that Grm+L-,,,+,(m,m+L; E) = 0, since rm+~-l,m+~ separates the sites m and m+L. 
Repeating this procedure, we obtain 
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m m+l m+2 - . . . .  mtL-1 n=mtL 

rm,tn+l rm+l,m+z . . . . . - .  L+L-l ,m+L 

- - - -  - 

Figure 4. The path from site m 10 site n (In - M I  = L )  in ihe case of K = 2. 

and consequently we have 

L 

I G ( m , m + L ;  E)I = I C ( m . m ; E ) I ~ l ~ l l ~ r ~ + , _ , , + , ( m + i . m + i ;  4. (3.3) 
j = l  

This relation enables us to estimate the exponential decay rate of the Green function 
IG(m, m + L ;  E)I using the property of the modified Green functions {Grm+,-,,-+,(m + 
i s m  + j ;  E ) ) .  

For simplicity, we choose m to be the origin 0. Taking the logarithm of equation (3.3). 
we obtain 

(3.4) 

We then assume the following conditions. 
Condition 1: In IG(0.O; E)I e m with probability one. 
Condition 2: The distribution function of lnlyil = In lGr,-,,,(i, i; E)-'l has finite 

Condition 3: ((lnlyil .lnlyjl) - (Inlyil)(lnlyjl)) E exp(-ali - j l ) ,  for U z 0, as 
moments, i.e. ((In Iyil)*) e CO. 

li - j l  + CO. 

Here we have used the abbreviation 

yi = ~+,-,,,(i, i; E)-' 

and the triangular bracket (. . .) denotes the arithmetical average over random potentials. 
The first term of equation (3.4) should go to zero with probability one in the limit L 3 00 
under condition 1. Under conditions 2 and 3, we can apply the law of large numbers to the 
last term of equation (3.4) though the modified Green functions {Gr,- , , , ( j ,  j ;  E)} are not 
completely independent random variables. We thus obtain 

where (Inlyl) l d y  Q(y)Inlyl and therefore the quantity on the left-hand side of 
equation (3.4) is self-averaging; it is independent of the configuration of the random 
potentials {Vi) in the limit as L + w. We then finally obtain that the exponential decay 
rate h~ of the Green function defined by 

1 
AE E - lim -In IC(0, L; E ) [  

L-ma L 
is self-averaging and is given by 

AE = -Inltl + (InIyI), (3.7) 
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It is obvious from equation (3.7) that the decay rate ?,E is identical to the decay rate of the 
geometrical average of the Green function. The validity of conditions 1 , 2  and 3 is essential 
in the present argument. We verify these three conditions in the case of the Lorentzian 
distribution in the following section and in appendix B. It is expected that these three 
conditions will also be valid for many other distributions. 

It should be noted here that, in one dimension (K = 1). the quantity L E  is nothing other 
than the Lyapunov exponent AE [19]. It has already been shown that the exponential decay 
rate of the eigenfunctions is also given by the Lyapunov exponent AE in one-dimensional 
systems [15,16]. 

If these three conditions are satisfied, the decay rate LE is given by equation (3.7) and 
we immediately obtain 

T Kawarabayashi and M Suzuki 

Prob - I ~ I G ( O , L ; E ) I > - ? , E + E  + O  a s L + o o  (3.8) 

where E is an arbitrary positive number. Here we denote the probability of event A by 
Prob(A). In the same way, we obtain 

c ) 

c Prob - In IG(0, L ;  E)I < -AE - E + 0 as L + CO. (3.9) 

From these two statements, it folIows that 

(3.10) 

with probability one. 

4. Analytical results for the LorenMan distribution 

In this section we consider the case in which the distribution function of the site energies is 
Lorentzian. The Lorentzian distribution function P ( V )  of the site energies [vi) is defined 
by 

y > 0. 1 Y  P(V) = -- 
r V Z f Y 2  

(4.1) 

In this case, if the distribution function em+, of the inverse of the modified Green function 
at the (m + 1)th shell is Lorentzian, the distribution Qm at the mth shell is also Lorentzian. 
We have already shown in section 2 that the distribution function at the boundary shell, 
QB, is given by 

Q d Y )  = P(E - Y) (4.2) 

since we have adopted the free boundary condition and therefore QB is the Lorentzian 
distribution. The distribution Q, at any shell then becomes Lorentzian and thus the 
distribution, Qj at the jth shell ( j  = 1, . . . , B )  can be expressed using parameters Aj 
and Wj )r 0 in the form 

1 w, 
Qj(Y) - 

IT ( y  - + W,? ' (4.3) 
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The Fourier transformation of the distribution Qj(x) is given by 
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Qj[kJ = exp(-iAjk - Wjlkl) where Qj[k] = exp(-ikx)Qj(x)dx. (4.4) 

Using equation (4.4), we can transform equation (2.13) as 

-!- 1 exp(ikyi) dkexp(-iA,k - W,lkl) 
2n 

J 

where i E S., j ( l ) ,  . . . , j ( K )  E &+I. Changing the variable k to -k on the right-hand 
side and integrating with respect to [ y j ~ ] ,  we get 

2n /exp(ikyi)dk exp(-iA,k - WJkl)  

1 
2ir 

= - 1 exp(ikyi) dk exp 

We thus obtain the recursion relation for the parameters (A", W,) as 

(4.7) 
w n t 1  W. = y + KtZ &+I A, = E - KtZ 

G I  + w:+1 4 + 1 +  %+I 

or, equivalently, 

w, = E + iy - KtZw;i, (4.8) 

A. + iW,. Taking 0, = wn+l 3 w in equation (4.8). we obtain the self- where w,, 
consistent equation 

o = E + iy - Kt'w-' (4.9) 

for the parameters (A, W) of the steady distribution Q(y), where w = A + iW and 

1 W 
k (y -A)*+ W2' Q(Y) = - 

The physical solution of equation (4.9) is easily obtained as 

where x is the positive root of 

x 2  + (Ez - y 2  - 4Kt2)x - E 2 Y 2-0 - . 

(4.10) 

(4.11) 
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The exponential decay rate LE of the Green function is thus evaluated from equation (3.7) 
as 

T Kawarabayashi and M S w k i  

In one dimension (K = l), we obtain 

(4.12) 

(4.13) 

where x is the positive root of x2 + ( E z  - y2 - 4f2)x - E 2 y z  = 0 in this case. This is 
nothing other than the Lyapunov exponent in the m e  of the Lorentzian distribution [ 111. 
It should be noted that h~ is always positive since K 2 1. 

The .distribution Qo of the Green function G(0,O; E)-'  is also obtained from 
equation (2.17) as 

where the parameters (Ao, WO) are given by 

A W 
A 2 + W Z '  Ao = E - ZtZ WO = y + ZfZ 

A2 + Wz 

(4.14) 

(4.15) 

It should be noted that the probability that the variable YO G(0,O; E)-I takes a particular 
value x E R is zero since the distribution Qo(Y0) is continuous and has no singularity. 
This guarantees condition 1 in the previous section. The convergence of series (on} and 
the validity of condition 3 are discussed in appendix B. 

In this case, we can easily show that condition 2 is satisfied. Since we know that the 
distribution Q ( y )  of the inverse of the modified Green function is Lorentzian, the distribution 
function of x = In IyI becomes 

F ( x )  / d r  Q(YM - I n  Irl) 
ex 

(e" - A)'+ W 2  
+ 
(e' + A)2 + W 2  

It is easily seen that 

F ( x )  a exp(-lxl) as 1x1 4 00 

and consequently the distribution F ( x )  has finite moments. 

(4.19) 
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5. A criterion for the localized region 
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Let us consider here a criterion for the localized region on the regular lattice on the level 
of the Bethe-Peierls approximation. For this, it may be useful to recall the case of classical 
spin models or percolation, where the relationship between the critical behaviour of models 
on the Bethe lattice and its Bethe-Peierls approximation on the regular lattice is well known 
[37,41,44]. For simplicity, we consider here the ferromagnetic Ising model as an example: 

J > O  (5.1) 

where ui = f l  denotes the Ising variable. It is well known that the critical temperature in 
the Bethe-Peierls approximation on the d-dimensional hypercubic lattice can be reproduced 
from the analysis on the Bethe lattice through the condition that 

where the decay rate ,$@ of the correlation function on the Bethe lattice (K = 2d - 1) is 
defined by 

(5.3) 

Here ( )T denotes the thermal average. Note that all the quantities which appear in 
equation (5.2) are defined on the Bethe lattice (the coordination number K = 2d - 1). 
The quantity A, introduced in equation (5.2) is the decay rate of the summation of the 
correlation function over the Lth shell defined by 

Nog . 

(5.4) 

which can be called a surface-to-centre correlation. This surface-to-centre correlation 
usually plays an important role in various classical spin models and percolation when the 
correspondence between the Bethe lattice and the regular lattice in such models is discussed 
[37,41,44]. 

In the case of the Anderson transition, we may consider that the Green function will 
correspond to the correlation function in spin systems. We thus expect that in the Anderson 
transition the summation C(L)  of the Green functions over the sites in the 15th shell defined 
by 

(5.5) 

also plays an important role when we consider an approximation for the regular lattice. In 
the absence of random potentials, for example, the condition that the exponential decay 
rate of C ( L )  is equal to zero indeed yields the correct band edges on the d-dimensional 
hypercubic lattice E = *Ut, provided that the connectivity of the Bethe lattice is taken as 
K = 2d - 1. In a random potential, therefore, it is expected that the condition that the decay 
rate of C(L) is equal to zero will also give a good approximation for the mobility edge on 
the regular lattice. It is, however, difficult to estimate the decay rate of C ( L )  itself since 
it is a summation over a large number of the Green functions. In the arguments developed 
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in the previous sections, we have shown that each Green function [G(O, j ;  E)\ decays 
exponentially with a decay rate he. We thus introduce here the quantity As = AE - In K 
as an approximation for the decay rate of C ( L ) .  Precisely, A, is the decay rate of the 
summation C&) of the geometrical average of the Green functions defined by 

T Kawarabayashi and M Suzuki 

namely 

C p ( L )  a exp(-AJ) as L 4 W. (5.7) 

Here ( )g denotes the geometrical average over random potentials. 
On the basis of these considerations, we expect that the condition 

A, = A €  -1nK > 0 (5.8) 

will yield a reasonable estimate for the localized region on the &dimensional hypercubic 
lattice ( Z d )  where d = ( K  + 1)/2 In our approximation, the mobility edge is given by the 
condition that As = 0. It is obvious that this will give exact results in one-dimensional 
systems. In the following, we present explicitly the analytical result obtained for the 
Lorentzian distribution. 

In the case of the Lorentzian distribution of site energies, we obtain from equation (4.12) 
that 

The condition that A, > 0 is thus reduced to 

(5.9) 

(5.10) 

where x is the positive root of 

xz + ( E 2  - y2 - 4Kt2)x - y 2 E 2  = 0. (5.11) 

It is easy to show that condition (5.10) becomes 

y2 > t 2 ,  
E2 

(K + l)z 
+ 

(K - 1)2 
(5.12) 

The region where As > 0 in the E - y plane is thus obtained as shown in figure 5. The 
boundary A, = 0 of this region, which is the mobility edge trajectory in our approximation, 
is given by 

(5.13) 
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E/t -(K+l) 0 K+ 1 

Figure 5. The mobility edge uajectory obtained by our criterion for the Lorentzian distribution 
P(V) = y / ( n ( V Z  + y2)1 in the system with coordination number Z = K + I. Here 
i, =,LE -In K. The region where Ax > 0 is represented by the shaded area 

0 " " ~ ' " ' ~ " "  " "  

E / t  

\ 

0 2 4 6 8 

Figure 6. The mobility edge trajectory obtained by our criterion for the Lorentzian distribution 
P ( V )  = y/{r(V2+ y z ) )  at 2 = K + 1 = 6 (full curve). The broken curve is the corresponding 
result obtained by the finite-si? scaling method which is rake" from the paper by B W  et ol 
[6] where the critical value yE at E = 0 was estimated to be yc/t = 3.8 & 0.5. 

Let us look at this result in detail. First, consider the case y = 0, i.e. the regular system. 
In this case, the mobility edges are given by E = f(K + 1)t = f Z t  and consequently 
we obtain the c o m t  band edges for the ddimensional (2d = 2) hypercubic lattice (Zd)  
[30,31]. In the onedimensional case (K = l), we recover the rigorous result that eigenstates 
are localized for any E provided that y is positive [ 11-16,26-29]. We have no region where 
ks < 0 in the E - y plane in the case K = 1. It should also be noted that the shape of 
the boundary (A, = 0) is consistent with that of the mobility edge trajectory obtained 
numerically in the three-dimensional system (Z3) (figure 6) [5,6]. It has been considered 
that the absence of extended states outside the unperturbed band is one of the characteristic 
features of the mobility edge trajectory for the Lorentzian distribution [6,45] and, in fact, 
this is clearly seen in our result (figures 5 and 6). We find from equation (5.13) that the 
critical value y,/t for E = 0 and 2 = 6 is given by K - I = 4. This is close to the value - 3.8 16,451 obtained by the finite-size scaling method in the three-dimensional system 
with coordination number 6. 

If we define the localization length t ( E )  by the inverse of the decay rate As, we obtain 
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(5.14) 

The critical exponent U for the localization length is defined by 

t ( E )  e ( E  - E,)-” E - Ec (5.15) 

where Ec denotes the mobility edge. We then find that the critical exponent U is given 
by U = 1 in our approximation. This value for the critical exponent has been obtained in 
previous work on the localization transition in the Bethe lattice [32.34.35]. 

One of the characteristic features of the Bethe lattice is that it has no closed path. 
The physical meaning of OUT approximation would then be interpreted as neglecting the 
effect of interferences between different paths and as taking into account only the effect 
of transmissions and reflections. Our approximation is therefore expected to work well for 
large d(= ( K  + l)/2), where the effect of closed loops becomes less important 

6. Discussion 

We have shown that the exponential decay rate of the Green function in a random potential 
on the Bethe lattice can be obtained by solving the self-consistent nonlinear integral 
equation (2.14) for the distribution function of the modifiedGreen functions. The decay rate 
AE can be considered to be a generalization of the ordinary Lyapunov exponent AE. The 
self-consistent equation (2.14) has been derived from the recursion relation for the modified 
Green functions. We have presented explicit results for the Lorentzian distribution of site. 
energies by solving the nonlinear equation analytically. As an application of these results, 
we have proposed criterion (5.8) for the localized region on regular lattices, which yields 
exact results in one dimension, and we have obtained qualitatively reasonable results for 
the mobility edge trajectory on a regular lattice in the case of a Lorentzian distribution of 
the site energies. 

Our criterion for the localized region on the d-dimensional hypercubic lattice is given 
bY 

A X , - A ~ - l n K > O  (6.1) 

using the decay rate A E  defined by (3.6) and K = 2d - I .  On the other hand, the 
condition under which Kunz and Souillard 1321 proved localization on the Bethe lattice 
can be expressed as (see appendix C) 

A: =Ai -1nK > 0 (6.2) 

with the decay rate of the arithmetic average of the Green function defined by 

I 
L-m L A i  = - lim - In(lC(0, L; E)I) .  (6.3) 

where ( )*denotes the arithmetic average over random potentials. Abou-Chacra eta1 [30,31] 
also obtained condition (6.2) as the condition for the stability of localized states on the Bethe 
lattice. In general, the decay rate of the Green function (or eigenfunctions) defined by 
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is expected to be larger than that of its arithmetic average. It means that As A; and 
thus the condition for the localized region is relaxed in our criterion. Our criterion is 
therefore expected to yield a better approximation for the mobility edge trajectory in the 
d-dimensional hypercubic lattice (d = (K + 1)/2) compared with criterion (6.2) obtained 
by Abou-Chacra et d [301 and by Kunz and Souillard [32] which seems to underestimate 
the localized region. In fact, in the case of the Lorentzian distribution, we have shown 
that our criterion is able to reproduce a typical feature of the mobility edge trajectory on 
the corresponding hypercubic lattice which has been obtained numerically by the finite-size 
scaling method 161. We note that criterion (6.2), obtained in previous work [30,32], failed 
to reproduce this property of the mobility edge trajectory [31]. In the case of the Anderson 
transition it is usually considered that the effect of interferences between different paths is 
important, and hence it is remarkable that we have obtained a qualitatively good estimate 
of the mobility edge trajectory on the regular lattice from an analysis of the Bethe lattice. 
Our present results may reflect some propeaies specific ta the Lorentzian distribution and, 
thus further investigation of other distributions of site energies is necessary to check the 
validity of our approximation. Numerical results for the Gaussian and box distributions will 
be reported elsewhere [46]. 

We have confined ourselves to the Green function at real energy in this paper. The 
Green function is usually defined for energy with an imaginary part and physical quantities 
can be expressed by such Green functions. It is known, however, that localization at energy 
E E R on the hypercubic lattice has been proved by von Dreifus and Klein [U] under the 
condition that the Green function at rea! energy E decays exponentially in a sufficiently large 
but finite system, provided that the distribution function of the site energies is absolutely 
continuous with a bounded density. On a regular lattice, therefore, the Green function at 
real energy E in a sufficiently large but finite system is indeed directly related to localization 
at energy E .  Since we have tried to propose a criterion for the localized region on a regular 
lattice, we have also used Green functions at real energy, although our argument is based 
on analysis of the Bethe lattice. 

We have not discussed localization itself on the Bethe lattice. In fact, it is not clear 
whether our criterion can be related to the condition for localization on the Bethe lattice 
with K 2 2. On the other hand, Kunz and Souillard [32] proved localization on the Bethe 
lattice under condition (6.2). However, condition (6.2) might not be the necessary condition 
for localization on the Bethe lattice. In the one-dimensional case (K = I), condition (6.2) 
reduces to the condition that Ai 0 and localization is proved under this condition by 
Delyon et al [13]. Their estimate of A; is, however, smaller than the Lyapunov exponent 
AE. Since localization in one dimension is proved under the condition that hE > 0 
[ 19,27,29], this fact would imply that the condition A; > 0 is not necessarily the necessary 
condition for localization in this case (K = I). Whether or not condition (6.2) is the 
necessary condition for localization on the Bethe lattice with K 2 2 remains an open 
question. 
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Appendix A. Derivation of equation (2.6) 

The resolvent identity states that 

T Kawarabayashi and M Suzuki 

1 
E - H r + p  - r' -- - 1 

E - H r  
1 1 1 

E - Hr+r,  E - Hr+r,  E - Hr 
- - + rt- 

where Hr = H - r and H r + p  = H - r - r'. Here let us choose r and r' as 

and we thus finally arrive at equation (2.6): 
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Appendix B. Convergence of the series [u,J 

The recursion relation is given by 

w, = E + iy - K t 2 0 ; ~ , .  @.U 
The above parameter w,, of the distribution on the boundary n = B is given by (see 
equation (4.2)) 

OB = E + iy. (B.2) 

Since y is positive, we immediately have 

Imo, z y > 0 (B.3) 

for any m. Consequently the right-hand side of the recursion relation is well defined for' 
any n. 

Let us introduce the following new variables (ai} defined in 

(B.4) 
%-I 

mi ==t- 
at 

i = 1, ... , B. 

We then find that the recursion relation for {wi) becomes 

The initial condition should be chosen as 

so that 
018-1 w E ~ t - = E + i y .  

fflJ 

The recursion relation (B.5) can be expressed in the form 

where 

The eigenvalues and eigenvectors of the matrix T are obtained as 

T (*;) = ** (A;) 
and 
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where x is the positive solution of 
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x2 + ( E z  - yz  - 4KZ2)x - E2yz = 0. 

Notice that the initial vector is expressed as 

We thus obtain 

= c + A y  (A;) + c-A!-' (A;) 

and therefore 

C+A+ + c-A-(A-IA+)L-' 
= t  

C+ + c-(A-/A+)~-I ' 

Since the absolute values of the eigenvalues A.+ and A- are given by 

and IA-1'= K -  f i - v  f i + Y  
&-v f i + Y  

1k+12 = K-  

we have lA+l > [A-[ provided that y > 0. We thus finally obtain that for y > 0 

lim OB-L = fA+ 
L+CC 

= o  

(B.12) 

(B.13) 

(B.15) 

(B.16) 

where B > L. Note that OB-L converges to w exponentially fast. This means that the 
distribution function at the shell sufficiently far from the boundary can be regarded as the 
steady distribution Q. 

Next, we consider the correlation between y i ,  i E S,,-li-jl and y j ,  j E S,,. We show in 
the following that the distribution yi under the restriction that the value of y j  is fixed. which 
is denoted by Q ( y i ;  y j ) ,  converges exponentially fast to Q ( y J  as li- j l  -+ 00. This leads to 
condition 3 in section 3. Since the distribution is known to be Lorentzian, the convergence 
of the disaibution is equivdent to the convergence of the parameters ( A i ,  K). We assume 
that sites i and j are sufficiently far from the boundary so that the disaibution of yk around 
them is considered to be Q(yk) .  In order to Ax the variable y j ,  we take distribution Q ( y j )  
to be 

Q ( y j )  ='8bj - x )  x E R  (B.18) 
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i.e. Aj = x and Wj = 0. We consider the path from j to i which is specified by the sites 
{j ,  j +  I , , , , .  j + L  = i ;  li - jl= L )  where j S n  E S,, asshown in figureB1 and the 
distributions under the condition yj '= x are denoted by 

We then get the recursion relation 

Gj+.+1 = E + iy - (K - 1)tZo-' - tZG,2" 

where the initial condition is Gj = x E R Using property (4.9), we get 

(B.20) 

(B.21). 2 - I  2--1 G ~ + . + ~  = w + t w - t oj+,,. 

Figure B1. The path from site j E S, to site i E S m - ~  (li - j l  = L)  m the case of K = 2 

By using almost the same argument as before (see equations (B.4)-(B.17)), we can 
show that G ~ + L  converges to o exponentially fast: 

lim G ~ + L  = OJ. (B.22) 
L-m 

Appendix C. Relation to previous work 

In order to see the relation to previous work [30,32], let us consider the quantity defined 
by 

where 0 denotes the origin of the Bethe lattice (see equation (5.5)). 
First, we consider the arithmetic average of the quantity C ( L )  

(C(Wa = X(IG(0, j; 
jESr .  

where the triangular bracket (. . .)a denotes the arithmetic average with respect to the 
distribution of the random potentials {V i } .  Since averaged quantities are uniform in om 
system, equation ( C 2 )  can be further simplified as 
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where the site L on the right-hand site of this equation denotes a site in the Lth shell and 
the path from the origin 0 to the site L is parametrized by the sites (0, 1,2,  . . . , L ]  as in 
section 3. From equation (3.3) we get 

T Kawarabayashi and M Suzuki 

where m E S,, yo = G(0,O; E)-’ and ym = Grn.L,(m, m ;  E)-1. It is then easy to see that 
the exponential decay rate of the arithmetic average of the Green function is given as 

1 
L-im L - l h  - ln(lG(0, L ;  E ) ] ) &  = - lnAm (C.5). 

where A,, denotes the largest eigenvalue of the transfer operator T defined by 

We thus obtain that the condition for the exponential decay of the arithmetic average of the 
summation of the Green function (C(L)), is given by KA- < 1. 

The properties of operator T in ((2.6) and its eigenvalues were discussed by Kunz 
and Souillard [32]. They discussed the correlation of eigenfunctions instead of the 
Green function and found that the decay of the arithmetic average of the conelation of 
eigenfunctions at energy E was determined by the largest eigenvalue of the same transfer 
operator T above defined [321. Namely, 

(C.7) 

Here @ E  is the solution of the Schrodmger equation H@ = E@ and the bracket (. . .)a again 
denotes the arithmetic average over random potentials. As a result, we find that the decay 
rate of the arithmetic average of the Green function is identical to that of the correlation of 
eigenfunctions. The reason why we have obtained the same decay rate for both the Green 
function and the correlation function is that the ratio of the eigenfunction zi defined by 

1 
L-ma L - lim - ln([@~(0)@E(L)l)a = -Inkm. 

zi E - t @ E ( j ) / @ &  for {i, j : lil > l j l ,  li - j l  = 11 

and the modified Green function 

Gri,$(i, i;  E)-’ for [i, j : lil > I j l ,  li - j l  = 11 

satisfy the same recursion relation as mentioned in section 2. Note that the correlation of 
eigenfunctions is also expressed by the product of the variables {z;} as 
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(compare with equation (3.3) in section 3). They claimed that they proved localization 
under the condition Kh- < 1, namely the exponential decay of the summation of the 
correlation functions over the sites in  the Lth shell [32]: 

in the limit as L + w. 
As was pointed out by Kunz and Souillard [32], the condition that K&,= c 1 is 

equivalent to the condition for the stability of the localized states obtained by Abou-Chacra 
et a1 [30]. They considered that the energy E lies in the localized region when the imaginary 
part of the self-energy vanishes as the imaginary part of the energy goes to zero and they 
investigated the distribution function of the self-energy. The distribution function of the real 
part of the self-energy they considered is directly related to the distribution Q we consider in 
the present paper, but they did not mention the decay of the Green function. They discussed, 
the stability of the desired solution of the distribution function of the self-energy for the 
localized state. We then find that their condition for the stability of the localized states [30] 
is understood as the condition for (C(L) ) ,  a exp(-al), a > 0. 

The criterion for the mobility edge was thus given by Khma = 1 in the previous work 
by AbouChacra et a1 [30] and Kunz and Souillard [32]. It should be emphasized that this 
criterion for the mobility edge is based on the property of the ahhmetic average of the 
Green function or eigenfunctions. 
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